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Abstract 

The largest likely R factor is useful for evaluating 
the significance of R factors obtained in structure 
determinations. Numerical expressions have been 
derived previously for calculating largest likely R 
factors in fiber diffraction analyses. Analytical 
approximations to largest likely R factors ( ~ )  in 
fiber diffraction are derived here that show the depen- 
dence on resolution (t~), helix symmetry (uo) and mol- 
ecular radius (~). The simplest approximation is 

~ ( u / ~ )  ~/2 which represents the overall behavior 
of R factors reasonably well. More accurate approxi- 
mations are also derived. These are applied to various 
structures and the dependence on different structural 
parameters is examined. These results provide insight 
into the behavior of R factors in fiber diffraction and 
may be useful in further analysis. 

0108-7673/92/020209-07503.00 

I. Introduction 

The significance of an R factor obtained in a structure 
determination can be assessed by comparison with 
the largest likely R factor; that for a structure uncorre- 
lated with the correct structure (Wilson, 1950). R 
factors in fiber diffraction are generally smaller than 
in single-crystal analyses because the diffraction pat- 
tern is cylindrically averaged, and the largest likely 
R factor in fiber diffraction has been studied by 
Stubbs (1989) and Millane (1989a, b, 1990). The 
largest likely R factor depends on the number of 
overlapping complex Fourier-Bessel structure factors 
at different positions in reciprocal space, and there- 
fore on the diameter and symmetry of the diffracting 
particle and the maximum resolution of the diffrac- 
tion data. The largest likely R factor in fiber diffrac- 
tion, while easily calculated, is a rather complicated 
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210 R FACTORS IN X-RAY FIBER DIFFRACTION. IV 

expression which makes its dependence on symmetry 
and resolution obscure (Millane, 1989b). Simple 
approximate expressions for largest likely R factors 
in fiber diffraction as a function of parameters such 
as molecular symmetry and diffraction data resolution 
are derived here. The utility and accuracy of these 
expressions are illustrated by applications to typical 
structures and the general behavior of R factors 
examined. 

Previous results for largest likely R factors in fiber 
diffraction are recalled in § 2, and explicit approxima- 
tions to these expressions are derived in § 3. In § 4, 
the accuracy of these expressions is examined by 
applying them to particular structures, and their gen- 
eral behavior discussed. Concluding remarks are 
m~ide in the final section. 

2. Preamble 

The largest likely R factor (denoted by ~ to distin- 
guish it from the cylindrical radius R in reciprocal 
space) for a fiber diffraction analysis is given by 
(Millane, 1989b) 

R= Y. N ~ , , S ~  NmS~ 
m = l  1 

where the sums are over the different numbers of 
overlapping complex Fourier-Bessel structure factors 
(both real and imaginary parts) G,,I (Klug, Crick & 
Wyckoff, 1958) that contribute to the different 
intensity measurements. N,, of the intensity measure- 
ments have m overlapping terms and M is the 
maximum value of m on the diffraction pattern. This 
can be applied to noncrystalline or polycrystalline 
specimens (Millane, 1989b) although in this paper 
only noncrystalline specimens are addressed. The ~,~ 
are the largest likely R factors for m overlapping 
terms (Stubbs, 1989) and are given by (Millane, 
1989a) 

~,,, = 2 - 2 - " + 2 m  (2 L -  1)Ba/2[(m/2) +1/2, m/2] 

(2) 

where (~) is the binomial coefficient and Bx(m, n) is 
the incomplete beta function. Note that there is a 
minus sign missing in equation (6) of Millane (1989 b). 
The Sr,, are proportional to the mean values of the 
amplitudes that contain m overlapping terms and are 
given by (Millane, 1989b) 

S~= r[(m/2)+ 1/2]/r(m/2) 

where F(x) is the gamma function. For a particular 
diffraction pattern, the N,, can be easily determined 
and the largest likely R factor calculated using tabu- 
lated values of gt,,, and S,,, (Millane, 1989b). 

Asymptotic analysis of the functions ~,,, and S,,, 
as a function of m (for m ~ oo) allows the following 

approximations (that are quite accurate) to be derived 
(Millane, 1990): 

~m ~- ( 2/ Tr) l/2 m-'/2 (4) 
Sm ~-2-'/2m 1/2 (5) 

~ S r ~  -~ 17- -'/2. (6) 

These expressions in (1) give largest likely R factors 
that are accurate to 0.01 for typical fiber structures 
(Millane, 1990). 

3. Theory 

( a ) Formulation 

Consider a molecule with uv helix symmetry (u 
repeat units in v turns), maximum radius ~ and c 
repeat c and consider diffraction data measured 
between minimum and maximum resolution limits 
(reciprocal-space radii) /5 and t3, respectively. The 
number of Fourier-Bessel structure factors that 
effectively contribute to the diffracted intensity at a 
position in reciprocal space depends on the behavior 
of the Bessel functions Jn(27rRr) where R and r are 
the cylindrical radii in reciprocal space and real space, 
respectively (Makowski, 1982). The Bessel function 

(1) J,, (2 zrRr) is considered to make a significant contribu- 
tion only for 

Inl<2~R~+p (7) 

where p is a parameter (this is of course an approxi- 
mation and is discussed further in § 5). The value of 
p is usually taken, somewhat arbitrarily, to be 2 (e.g. 
Makowski, 1982), but is considered variable here to 
examine its effect on the results. 

The largest likely R factor depends in general on 
the parameters u, v, ~, c, 15, p, p, although the approxi- 
mations derived here are independent of some of 
these parameters. It is convenient to consider separ- 
ately the case where there is effectively no lower limit 
on the resolution of the diffraction data (IS = 0) and 
this is denoted by ~(15 = 0). 

The summations in (1) over m actually represent 
a summation over the diffraction pattern (Millane, 
1989b) and the analysis is conveniently carried out 
using the latter description. Equation (1) can there- 
fore be written as 

kt') ~(m( R, l))S(m( R, l)) dR 
= t=0 ~t) (8) 

hit) S(m(R, l)) dR 
(3) l=o au) 

where ~, ,  and S,,, are replaced by ~ ( m )  and S(m) 
respectively, re(R, l) denotes the value of m on layer 
line I at reciprocal-space radius R,/~ (l) and R (1) are 
the minimum and maximum values, respectively, of 
R on layer line l between the resolution limits, and 
L is the maximum value of I. In order to make the 
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analysis tractable, the summations in (8) are approxi- 
mated by integrals and the approximations (5) and 
(6) are used, giving 

i (~2_~2),/2 U(m(R, Z)) dR dZ 
= o ~ ( z )  

i (/~2 22)1/2 1/2(  
[. m R ,Z )  d R d Z  

o t~(z) 

= (2/ 7r)'/2A/ B (9) 

where U(m) = 0  for m = 0  and U(m) = 1 for m > 0  
and the meaning of the other symbols is obvious, with 
l replaced by Z. A and B denote the numerator and 
denominator  respectively in (9). 

Equation (9) provides a convenient formulation 
for deriving an analytic expression for the largest 
likely R factor. This requires an analytic expression 
for m(R, Z) which is derived in the next subsection, 
and expressions for ~ are derived in the two following 
subsections. 

(b) Expressions for m(R, Z) 

The value of m is equal to twice the number of 
Fourier-Bessel structure factors that contribute on 
layer line l at reciprocal-space radius R. It depends 
therefore on the relevant behavior of the Bessel func- 
tions given by (7) and the selection rule 

l =um + vn (1 O) 

that determines which Fourier-Bessel terms G,t(R) 
are non-zero on layer line l, where m and n are 
integers. On a particular layer line, solutions to (10) 
are given by (Makowski, 1982) 

n= nl + mu (11) 

where nl is any solution to (10). It is convenient to 
take for n~ the smallest value of [n[, and then inspec- 
tion of (11) shows that nl satisfies the inequality 

O<-nl <-U/2. (12) 

Equation (10) shows that nl takes on all integral 
values between 0 and u/2 for any set of layer lines 
{I, 1+ 1 , . . . ,  I+ u/2}. Therefore, the average value of 
nl over a set of consecutive layer lines is (nO = u/4. 
Inspection of (11) shows that the average difference 
,'In between consecutive values of Inl on a particular 
layer line is u/2. 

From (7), m is a step function of R (Fig. 1). For 
the purposes of evaluating (9), it is convenient to 
approximate m as a linear function of R, and the 
above paragraph and Fig. 1 show that the appropriate 
approximation is 

m( R, Z ) =  mo + (STrf/ u) R (13) 

where m0 = 1 - 4 ( n l - p ) / u .  Since m0 depends on nl 
and (n l )=  u/4, the average value of mo is 4p/u, so 

that (13) can be written as 

m(R,Z)=(4p /u )+(87r~ /u )R  (14) 

which is an approximation for m that can be used 
in (9). 

On the equator, the G,t(R) satisfy the relationship 
G-,o(R)=(-1)"G*o(R) ,  so that G~o(R) and 
G_,o(R) do not contain independent information. 
Hence, on the equator (where both n and - n  satisfy 
the selection rule), m is equal to half that given by 
(14). 

(c) First approximation to the largest likely R factor 

For the case/5 = 0, the numerator in (9) is given by 

A = ~rfi2/4. (15) 

Evaluation of the denominator  in (9) is difficult unless 
the constant term in (14) is neglected, in which case 

i (fi2-Z2)'/2 
B=(8zr~/u) '/2 ~ R '/2 dR dZ (16) 

0 0 

and evaluating the R integral gives 

B=(2/3)(87r~/u) '/2 i ( f i2-Z2) s/4 dZ. (17) 
o 

This can be evaluated in terms of the beta function 
(Abramowitz & Stegun, 1972, equation 6.2.1), and 
thence in terms of the gamma function (Abramowitz 
& Stegun, 1972, equation 6.2.2) giving 

B=(8/5)[F(3/4)]2(~/u)l/2fi 5/2. (18) 

Substituting (15) and (18) into (9) gives an approxi- 
mation to the largest likely R factor as 

~(~  = O) = k(u/  ?fi)~/2 (19) 

where 

k=(57r~/E)/{16x2~/2[F(3/4)]2}=0.2608. (20) 

A similar analysis with/5 # 0 is straightforward and 
gives 

~=k(u/?~)1/2(1-x2)(1-xS/2)  -~ (21) 

6 
m 

4 

/ 
2 / 

2:1 

/ t  / 

/ / 

/ / t ~ / /  / / 

Fig. 1. The number of Fourier-Bessel terms (real and imaginary 
parts) m contributing to the layer-line intensity as a function of 
cylindrical radius R ( ) and the linear approximation 
re(R, Z) (---) derived here. 
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where 

x=~/~ .  (22) 

The approximations (19) and (21) are compared 
in Fig. 2 (dashed lines) with R factors calculated 
exactly (solid lines) using (1) (Millane, 1989b) for a 
hypothetical structure with c = 20 A, ~= 10 A, with 
101 and 51 helix symmetry, as a function of maximum 
resolution p, and for two minimum resolutions/5. In 
all the examples p = 2 unless stated otherwise. The 
approximations mimic the general behavior of the R 
factors quite well and are reasonably accurate at high 
resolution but are not particularly accurate at low 
resolution. 

( d) Second approximation to the largest likely R factor 

The approximations to the R factors derived above 
can be improved by using a more accurate evaluation 
of B in (9). This is done firstly by considering the 
constant term 4p/u in (14) that was neglected in the 
above analysis. In order to do this but keep the 
integral for B tractable, m(R, Z) is approximated by 
(see Appendix) 

2 A A  m(R,Z)=(87r~/u)[1 +6p/(Tr  rp)]R. (23) 

Secondly, as described above, the value of m on the 
equator is half that given by (14). The proportion of 
the total measurements contributed by the equator 
(for ~ = 0) is 4/7rct3 so that, referring to (9), this effect 
can be approximately corrected for by multiplying B 
by the factor f where 

f =  [ 1 - 2/( 7rcfi) ] l/z. (24) 

Incorporating (23) and (24) into the evaluation of B 
as above gives the improved approximation 

~(/5 = O) = k(u/~)l /2[1 -{-6p/(7"1"2~)] - ' /2 

x [ 1 - 2/(~rct;)]-1/2. (25) 

A similar analysis is performed for t5 # 0 and, with 
reference to the Appendix, this gives 

m(R,Z)=(81r~/u)[l  +6p(l + x2)/(Tr2~)]R (26) 

which allows the largest likely R factor to be approxi- 
mated by 

= k(u/?fi)'/2[ 1 + 6p(1 + x2)/(17" 2 ~ )  ]-1/2 

× { 1 - 2/[  ¢rc~(I + x)]}-,/2(1 - x2)(1 - xS/2) -I 

(27) 

The approximations (25) and (27) are compared 
in Fig. 2 (dotted lines) with the first approximations 
derived above, and are seen to be significant improve- 
ments over the former. They are accurate to 0.01 for 
15 = 0 in these examples, which is sufficient accuracy 
in practice. For larger values of/5, they are not quite 
as accurate at low resolution. 

4. Examples and discussion 

The general behavior of the largest likely R factor 
with resolution is illustrated in Fig. 2. The dependence 
on other parameters is investigated here and the 
accuracies of the approximations are assessed for 
some actual structures. 

The behavior of the largest likely R factor with 
different helix symmetries ul is shown by the solid 
line in Fig. 3, and compared with calculations made 
using the two approximations derived above. Both 
approximations derived here mimic the general 
behavior, the second approximation being quite 
accurate. The first approximation is poorer for larger 
u since the approximation for m(R, Z) used is less 
accurate where the first Fourier-Bessel term nl begins 
to contribute at larger distances from the meridian. 

The variation of the R factor with v, for uv helix 
symmetry, is expected to be small because the effect 
of different values of v averages out over a sufficient 
number of layer lines. This is shown to indeed be the 
case in Fig. 4, where the R factor can be compared 
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(a) 

72 
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0.2 
0.2 
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b (~'1 
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Fig. 2. (a) Variation of the largest likely R factor (for a structure 
with radius ? = 10 A and c repeat 20/~, for t5 = 0) with maximum 
resolution ( ). The first approximations [(19) and (21)] are 
shown by the dashed lines and the second approximations [(25) 
and (27)] by the dotted lines. The upper curves are for 10~ helix 
symmetry and the lower curves for 51 helix symmetry. (b) The 
same as (a) except that the minimum resolution is 10A 
(/~ = O.1A-'). 



with the (v independent) approximations derived 
here. 

The effect of different values of p on the R factor 
is shown in Fig. 5 for 1 < p < 3. The first approxima- 
tion is independent of p and the seco_n_d approxima- 

0.7 ] 
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0.6 

0.5 

0.4 

0.3 

0.2 I I I 

3 5 10 15 20 
u 

Fig. 3. Variation of  the largest likely R factor with helix symmetry 
u I for a structure with F=10/~, and c = 2 0 A ,  tS=0 and a 
maximum resolution of  3/~ ( ). The first approximation (19) 
is shown by the dashed line and the second approximation (25) 
by the dotted line. 

0.6 

0.5 

0,4 I I I I 

2 3 4 5 6 
v 

Fig. 4. Variation of  the largest likely R factor for a structure with 
F = 10/~ and c = 20 A,/5 = 0 and a maximum resolution of 3/~ 
with v for 13v helix symmetry ( ). The first approximation 
(19) is shown by the dashed line and the second approximation 
(25) by the dotted line. 

0.5 I I I 

0,4 

I I 0.3 I 
1.0 1.5 2.0 2.5 3.0 

P 

Fig. 5. Variation of  the largest likely R factor for a structure with 
F = 10/~ and c = 20 A, t5 = 0 and a maximum resolution of  3 
with p for 101 helix symmetry ( ). The first approximation 
(19) is shown by the dashed line and the second approximation 
(25) by the dotted line. 

Table 1. Approximate error levels E(p) resulting from 
neglecting Fourier-Bessel structure factors for which 

Inl > 27rRr-p 

p E(p) 
1.0 0.132 
1.5 0.090 
2.0 0.068 
2.5 0.054 
3.0 0.045 

tion reproduces the dependence on p quite well. The 
value of p that is appropriate depends on what value 
of J.(x) is considered significant in contributing to 
the diffracted intensity (this value is smaller for larger 
p). This would depend in turn on the accuracy with 
which II(R) is measured. The error level E(p) intro- 
duced by neglecting the Fourier-Bessel terms based 
on (7) could be very approximately quantified by 

E(p)  = max {J.(n-p)} (28) 
?1 

which can be considered a relative (or normalized) 
error since max,,x {J,(x)} = Jo(0) = 1. This error level 
is shown in Table 1 for the above range of values of 
p. Equating this to a probable (relative) precision of 
intensity measurement of, say, between 5 and 10%, 
a value of p between 1 and 3 would appear to be 
realistic. Fig. 5 shows that the choice of p within this 
range has minimal significant effect ( d ~  < 0.02) on 
the calculated largest likely R factors. 

The approximate expressions derived here were 
used to calculate largest likely R factors for some 
typical fiber structures and are compared with the 
values calculated exactly (Millane, 1989b). The struc- 
tures used were a nucleic acid (Park, Arnott, Chan- 
drasekaran, Millane & Campagnari ,  1987), the helical 
virus TMV (Namba & Stubbs, 1985) and the bac- 
teriophage Pfl (Stark, Glucksman & Makowski, 
1988). The first approximation (denoted by ~ , )  given 
by (19) or (21), and the second approximation (~2) 
given by (25) or (27) are compared with the exact 
values ( ~ )  in Table 2. These results show that the 
first approximation gives a useful guide to largest 
likely R factors although the errors can be as large 
as 0.05. The second approximation however is accur- 
ate to 0.01 in all cases, which is sufficient accuracy 
in practice. 

It should be noted that the analysis described by 
Millane (1989b) assumed that the terms G,~(R) and 
G_,,t(R) contain the same information, and so do not 
contribute separately to m. This is in fact not correct, 
except on the equator as described in § 3(b) above. 
This error had two effects. The actual R factors calcu- 
lated there were slightly too large, although com- 
parison of Table 2 of Millane (1989b) with Table 2 
here shows that this is of little significance. For small 
values of u, the R factor alternated between two 
curves for u odd and even [Fig. 2(b) of Millane, 
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Table 2. Exact (~)  and approximate ( ~  and ~2) largest likely R factors for three structures 

Maximum Minimum Maximum 
Helix radius resolution resolution 

Molecule symmetry (/~) (A) (/~,) ~ ~ t  ~2 

DNA l0 t 10.0 oo 3.0 0.401 0.452 0.399 
DNA 101 10.0 oo 2.5 0.374 0.412 0.370 
TMV 493 90.0 10.0 5.0 0.373 0.392 0.382 
TMV 493 90.0 10.0 3.0 0.307 0.319 0.316 
Pfl 275 30.0 10.0 5.0 0.458 0.504 0.457 
Pfl 275 30.0 10.0 3.0 0.381 0.410 0.389 

~1 is calculated using equation (19) or (21), and N2 using equation (25) or (27). 

1989b], whereas no such alternation is actually 
present (Fig. 3 here). 

5. Concluding remarks 

Analytical expressions have been derived that show 
quite clearly the dependence of the largest likely R 
factor in fiber diffraction on resolution, helix sym- 
metry and molecular radius. These apply to noncrys- 
talline specimens only - for polycrystalline specimens 
(9) is replaced by a sum over the Bragg reflections, 
and expressions such as (14) for m are not appropri- 
ate. The simplest expressions (19) and (21) show the 
main dependence on these parameters and, although 
they do not give accurate values in all cases, they 
represent the overall behavior quite well. More accur- 
ate expressions (25) and (27) have been derived in 
the form of corrections to the simpler expressions. 
These give quite accurate values in the cases examined 
here, and describe the behavior in terms of the 
different parameters very well. The utility of these 
results is that they provide insight into the behavior 
of fiber diffraction R factors, and the simple form of 
the expressions obtained may make them useful in 
further analysis. Although largest likely R factors can 
be calculated straightforwardly numerically (Millane, 
1989b), calculation using (25) or (97) is much simpler 
and should be sufficiently accurate in most cases. The 
approximate analytical expressions for m(R,Z)  
derived here may also be useful in other areas of fiber 
diffraction theory. 

It is common practice to use (7) with p - - 2  as the 
basis for determining which Fourier-Bessel terms 
contribute significantly to the diffracted intensity. 
Although this is a reasonable approach, it is clearly 
an approximation that is worthy of further study. The 
results in Table 1 for different values of p provide a 
little information in this regard. There is no difficulty 
when simply calculating diffracted intensities since 
inclusion of more terms than necessary does not affect 
the calculation. However, when considering the num- 
ber of significant terms, the cutoff for n should be 
such that the error introduced by excluding the 
higher-order terms is constant over the diffraction 
pattern. It is not clear that a cutoff based on (7) 
achieves this. 

I am grateful to the US National Science Founda- 
tion for support (DMB-8916477) and Deb Zerth for 
word processing. 

APPENDIX 
Approximation to m(R, Z) 

The intent here is to derive a linear approximation 
to m(R, Z) given by (14) that has no constant term, 
but gives an approximation to B in (9) that is better 
than that given by simply ignoring the constant term 
in (14). Since the approximation to re(R, Z) used is 
independent of Z, consider the rectangular region 
0 < Z </~, 0 < R < C, where C is a constant, rather 
than the quadrant 0 < p < ~. For the case/5 = 0, requir- 
ing the areas of these two regions to be equal gives 

C= 7r~/4. (A1) 

This allows the expression for B to be reduced to a 
single integral over R, and denoting (14) by m = 
c~ +/3R and the required approximation by m = yR, 
the value of 3' is determined by requiring that 

c c 
I (~'R)I/2dR=I (a+flR) '/2dR. (A2) 
o o 

Evaluating (A2) gives 

y=fl[(l+a/flC)3/2-(a/flC)3/2]2 (A3) 

and expanding to first order in a gives 

y= fl(l + 3a/flC). (A4) 

Substituting for a,/3 and C gives equation (23) for 
m(R,Z).  

For the case/5 # 0, the analysis is identical except 
that 

C= ~-~[1-(/51~)2]14 (A5) 

and, for 15 << t3, using this gives (26). 
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Abstract 

It is shown that a density-matrix formalism may be 
used to analyse various aspects of coherence in high- 
energy electron diffraction theory. This approach is 
demonstrated by two examples: an analysis of the 
coherence between two Bloch waves generated by 
diffuse scattering as a function of crystal thickness 
(the dependent-to-independent Bloch-wave 'transi- 
tion') and an analysis of the coherence between elec- 
trons which are diffusely scattered in different direc- 
tions and their contribution to high-resolution images. 

I. Introduction 

Using density-matrix theory one can fully describe a 
quantum or statistical system even if one cannot con- 
struct the exact wave function for the system (e.g. 
Blum, 1981). To quote Ziman (1969), 'we cannot learn 
more than is given by the density matrix; it is all we 
know and all we need to know about the "state" of 
the system'. One important feature of the density 
matrix is that it contains information about the corre- 
lation or coherence between the states of a quantum 
system; this is manifested in the off-diagonal elements 
of the relevant density matrix. The effects of interac- 
tions on the system are described by the Liouville 
equation which governs the evolution of the density 
matrix. Physical observables are then readily found 
by operating on the resulting matrix. 

There are many different kinds of scattering experi- 
ments where a density-matrix description provides a 
convenient framework in which to describe the coher- 
ence among the states involved in the scattering. These 
include photon (e.g. Loudon, 1983), electron (e.g. 
Blum, 1981) and neutron (e.g. Balcar & Lovesey, 
1989) scattering. The question of coherence arises in 
several contexts in high-energy electron diffraction 
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theory. One obvious case is in high-resolution imag- 
ing, where the coherently diffracted beams are recon- 
structed (albeit with the effects of lens aberrations) 
to form an image. A more difficult question concerns 
the role of diffusely scattered electrons in high-resol- 
ution imaging (Cowley, 1988). Do these simply pro- 
vide a uniform background, or do they also contribute 
to form a 'background'  lattice image? The answer 
must lie in the degree of coherence between electrons 
which have been diffusely scattered to different points 
in the diffraction plane. A second area where coher- 
ence has been widely discussed is in the detailed 
mechanism of inelastic and diffuse scattering pro- 
cesses. A number of questions arise here, such as 
whether diffusely and inelastically scattered electrons 
preserve diffraction image contrast (e.g. Howie, 1963; 
Rez, Humphreys & Whelan, 1977) and whether 
dependent or independent Bloch-wave models pro- 
vide the most appropriate description (e.g. Cherns, 
Howie & Jacobs, 1973; Wright & Bird, 1989, and 
references therein). There has been some confusion 
about what exactly is meant by coherence in this case: 
what precisely is coherent (or otherwise) with what? 
Our aim in this paper is to show that a density-matrix 
approach provides a unifying description which 
encompasses all these areas where coherence is the 
issue. The use of density matrices is not new in diffrac- 
tion and channelling theory. Rez (1977) and Dudarev 
& Ryazanov (1988) set up a formalism to analyse 
multiple elastic and inelastic scattering but they do 
not attempt to analyse detailed questions of coher- 
ence. Kagan & Kononets (1973, 1974) discuss the use 
of density matrices in the theory of particle channel- 
ling and analyse the damping of the off-diagonal 
elements of the matrix (see below) due to inelastic 
scattering. However, they do not discuss aspects of 
the theory which are specific to high-energy electron 
scattering. The results we derive are not new and can 
be found without density-matrix theory. Neverthe- 
less, our analysis shows how correlation and 
coherence can be discussed in a rigorous 
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